
The Integrated Scientific Tool Kit:
An Overview of the System and its Components

Ericka Lutz and Chris Saltmarsh
August, 1992

Introduction to the Integrated Scientific Tool Kit .. 4

Document Format.. 5

The ISTK Approach Track 1
A Cost Effective Approach.. 6
Deciding Which Components to Use.. 6

Approach Track 2
More About ISTK and the Unix-Style Approach ... 7

ISTK Communications Systems
Glish and Communistks.. 8
What are Communistks? .. 8
What is Glish?... 8

Communications Track 2
The Glish Language and the Glish Executive... 9
Glish Script ... 10
Interfaces Controlled by Glish Script .. 11
Tuning an Accelerator Beam .. 12
 The Tune ... 12
 Measuring the Tune... 13
 Correcting the Tune... 13
Tuning the Accelerator Beam Illustrations ... 15
 Altering Sequences.. 16
 Using Comministks to Alter the Beam Tune.. 16
 Using Glish to Alter the Beam Tuning Sequence .. 16
Communistk Elements.. 17
 The Focus.. 17
 Communistk Elements... 17
 Communistk Constraints.. 17
 Change of Focus ... 18

The Self-describing Data Standard ... 19

SDS Track 2
Data Transfer and Memory Allocation .. 21

Table of Contents

 The sid Editor... 21
SDS Enables Transfer .. 23
Two "Navagation" Aids ... 23

The Graphic Library for the Integrated Scientific Tool Kit...24
The GLISTK Family Tree.. 24

Credits and References...26
ISTK Implementation .. 26
ISTK Information and Documentation... 26

Introduction to the Integrated Scientific Tool Kit

The Integrated Scientific Tool Kit (ISTK) is a computer software tool and component kit de-
veloped for use by experimentalists. ISTK’s development has originated in software design
for particle accelerators but its uses are applicable to many experimental physics control and
analysis systems.

ISTK’s three main components are designed to manage major areas of software systems
which are often not sufficiently served by commercial or industrial products. By first looking
at the tasks involved to carry out a project, it is easy to determine which ISTK components
are appropriate for the tasks at hand.

SDS (the Self-describing Data Standard) facilitates data flow: the movement of data between
computers and between applications. If any data will be used in more than one process, it
should be put in an SDS.

The Communication Systems (Glish and Communistks) manage the control flow of opera-
tional sequences. The kind of control flow performance needed, between elements of a
single application or between applications, determines whether Communistks or Glish (the
internal and external control flow components) should be used.

GLISTK (the Graphic Library for the Integrated Tool Kit) handles the interface between peo-
ple and computers.

Some of the currently available ISTK tools include:

sid, an interface to numeric and textual data that provides customized access and
 editing mechanisms.
latview, a graphical view of accelerator lattices that is able to signal
 user queries to other programs.
conv, a program that converts binary data files to different machine
 architectures.
gasp, a pre-processor for basic SDS program writing.
The Glish executive, a program to carry-out complex and adaptive multi-processor
 sequencing.

The developers of ISTK are involved in the ongoing process of developing multi-use software
tools that can be assembled and modified for the user’s own purposes. ISTK is also a
collaborative project. Tools and ideas are being developed at the Superconducting Super
Collider Laboratory, Lawrence Berkeley Laboratory, FermiLab and other physics laboratories
world-wide. People are encouraged to add their own multi-use ISTK tools to the existing
ISTK libraries and utilities.

ISTK - An Overview of the System and its Components 4 August, 1992

Document Format

This document exists on two "tracks". Those readers desiring a general overview of the
Integrated Scientific Tool Kit, its approach and its components, should read Track One.
Those desiring more in-depth, technical information should supplement Track One with
Track Two.

ISTK - An Overview of the System and its Components 5 August, 1992

The ISTK Approach Track 1

A Cost-Effective Approach
There is a problem inherent in designing software: design and costing procedures often be-
come a large part of a project. One common dilemma is that, unless a software project in
development is already well understood, there is considerable financial risk in the early
stages yet full understanding of software needs often comes only once the software devel-
opment has been done. This dilemma makes it difficult and expensive to make a commit-
ment to full software implementation.

The ISTK components have been designed to aid in the preliminary stages of product or
system delivery (beyond the basic proof-of-principle tests). Using the ISTK components,
ideas can be explored, explained, made more precise, and discarded (if necessary) without
great additional cost.

The ISTK system can quickly respond to changes because the realm of application in which
it was born (technically challenging experimental control and analysis) is always in such a
phase of development. In large physics experiments, software flexibility is required at every
stage; by the time a system has been "hardened" into a final form, other factors (equipment,
realm of applicability) have changed and the software must be altered to meet the new
needs.

ISTK’s strengths are its flexibility and its faculty in filling the gaps between available software
programs. ISTK cannot replace all software but it can be used as an excellent supplement
to existing commercial software. In a constantly fluctuating experimental situation, ISTK’s
flexibility provides a great advantage. In a market where factors are more stable, the ISTK
use-approach and design emphasis on flexibility for the user can also give significant ad-
vantages during the appraisal and start-up phases.

ISTK provides a variety of tools for building various kinds of systems. The components can
be used as prototyping tools to create applications in a short period of time, for experiment
preparation (simulations, test experiments, etc.), controls systems, and for preliminary data
analysis. Much of the ISTK system is sufficiently hardened to form the basis of production
code decisions; decisions that can be made effectively only after a job analysis process.

Deciding Which Components to Use
The appropriate way to use ISTK is to break each overall job into basic, general tasks. In
order to decide which tools are needed for a particular job, the tasks should be broken into
generic bits which are as dissociated from the particular application as possible. Some of
the possible tasks inherent in a jobs might be: organizing data, displaying graphics, listing
datasets, etc. This conceptual analysis includes determining the needed processes, defining
the flow of data between these processes, and defining how these processes should be
connected by control flow. All of this analysis should occur before any implementation takes

ISTK - An Overview of the System and its Components 6 August, 1992

place. The design of the major ISTK components; SDS, the data discipline and Glish, the
control-flow manager, are, in a sense, a bottom-up response to top-down and object-oriented
analysis techniques.

Implementation Decisions
The ISTK components can be used for developing large scale systems as well as for de-
signing simple and complex single applications. The conceptual approach is basically the
same; only the implementation differs. ISTK tools are not specific to any one application.
Strong attempts have been made to insure that the tools are well-designed enough to be
useful, yet abstract enough to be used in a variety of circumstances.

CAVEAT:
It is important to remember that the ISTK tools and techniques do not, in themselves, solve
problems. Their role is to ease the ability of skilled people (programmers, engineers, physi-
cists) to encapsulate and pass on their problem-solving experience to end-users, end-users
who do not want or need the depth or breadth of knowledge contained in the software struc-
tures in order to perform their tasks. In this, ISTK is like all other software systems. To
pretend otherwise is wrong; to expect more will lead to disappointment.

Approach Track 2
More About ISTK and the Unix-Style Approach

The ISTK package contains general all-purpose applications; components that can be used alone,
together, or as a supplement to pre-existing software to aid in clarifying and organizing experimental
data and operations. The ISTK system of using inter-connected components owes a large debt to the
principles used to build Unix, that is, independent modules each designed to do a single job well,
working together in conjunction with each other. The result of this approach for Unix was an immensely
capable and coherent operating system.

ISTK’s various programs are not connected until they are meshed together in the net in any way that
the operator chooses. The ISTK applications can be thought of as Tinker Toys, components which
remain the same, hooked together by changeable, flexible, connections. By merely altering the way the
components are connected, the user can build elaborate programmatic structures without making in-
ternal program changes.

ISTK extends the concepts of the Unix system. Whereas Unix is a programming environment, ISTK
extends it to components that provide great flexibility for people doing physics experiments. Concep-
tually, the SDS data discipline and the Glish control flow description parallel the general rules of the
Unix operating system and allow the building of general purpose tools.

ISTK - An Overview of the System and its Components 7 August, 1992

Communications Track 1
ISTK Communication Systems

Glish and Communistks
The ISTK Communication Systems, Glish and Communistks, are the ISTK components in
charge of control flow within and between applications. Within ISTK applications, connec-
tions are managed by the Communistk, the ISTK communication class. Between applica-
tions, ISTK connections are managed by Glish. Conceptually, the Glish and Communistk
connections are similar. However, their implementation varies greatly.

What are Communistks?
Communistks are the communication class for the ISTK libraries. A Communistk is an ob-
ject which focuses on a value and has a list of other data objects to notify when this value, or
the Focus itself, changes. Communistks exist only in the object-oriented languages. They
enable and simplify communication between objects in a program and, by using the Glish
connection, between different programs within a processor and between programs running
on physically distinct processors.

What is Glish?
Glish is both a rule-based language to describe high-order sequencing and an executive to
carry out this sequencing. The Glish language explicitly states the control flow so that it can
be managed and properly understood. The Glish Executive is also a multi-task controller and
inter-task communication system.

The Glish system separates the high-level control from the mechanical, pre-determined soft-
ware and hardware operations and connects the control flow to an up-front sequencing
language that coordinates interdependent sequences of widely distributed processes. Be-
cause of this separation, the Glish sequence of operations is protected from non-vital
hardware failure.

Glish enables tasks to be broken into small components for clarity and organization. The
components run as small programs orchestrated by Glish into a larger program with a com-
mon set of rules and conditions. Any program, even one completely unaware of Glish, can
be run and monitored by Glish.

Glish combines the benefits of computer sequencing with the flexibility of on-line human
modification. It allows quick, immediate input while freeing people from redundant or petty
operating decisions.

ISTK - An Overview of the System and its Components 8 August, 1992

Communications Track 2
The Glish Language and the Glish Executive

Glish establishes, in a few words, rules on how to respond to an infinite set of
circumstances. To do this, Glish has two parts, the Glish language and the Glish
executive. The Glish Language is used to express the sequencing and the Glish Ex-
ecutive carries out that sequencing. The user establishes the cause and effect
relationships by writing the Glish script. The Glish Executive then orchestrates and
sequences events between small programs and organizes them into a larger program
with a common set of rules and conditions. The Glish Executive is much like a switch-
board operator who establishes the connections between appropriate "parties",
allowing the transfer of information.

(The relationship between the Glish language and the Glish Executive is paralleled by
the relationship between SQL as a data definition standard and the DBMS’s that im-
plement all or part of that standard, and the relationship between FORTRAN as a
language standard and compilers that implement all of part of that standard.)

Glish is not restricted to one Executive, and in different circumstances, different Ex-
ecutives may be appropriate. For example, in a particle accelerator, there is a range
of control flow, from hard-wired power supply settings, through theoretical and math-
ematical abstractions, to subjective decisions (like determining the full validity of the
results). At times, a combination of Executives might be installed on the same system;
the high-level Executive interfacing with the human operators and the low-level real-
time system Executive in charge of the hard-event driven functions, both using the
same sequencing rules, expressed in the same language.

Communications Track 2

ISTK - An Overview of the System and its Components 9 August, 1992

Communications Track 2

Glish Script
The Glish language uses some unusual constructs ("whenever", "if and whenever" etc.) to handle se-
quencing situations. A simple description is written to describe what is expected to occur, the events that
should be generated by those occurrences and under what conditions those events should be chan-
neled to other processes. Because Glish is rule-based, this description of conditions can be written in
any order. When the conditions defined in the Glish script are met, Glish sends named events to
specified processes ("clients"). Glish can start and stop its clients and can provide inter-process com-
munication between various clients. Any two (or more) processes running anywhere on the network
can use Glish to communicate.

oswald := client("oswald -T -geometry +1+1");
sscsel := client("sscsel -geometry +660+1");
catch := client("Ccatch -geometry +190+380");
sid := client("sid");
whenever sscsel->SdsFile do
{

 oswald->SDSFILE($value);
 sid->Display($value);

}
whenever oswald->MoveTo do
{

 catch->ElementIndicator($value);
}
whenever sscsel->SRange do
{

 oswald->SRange($value);
}

ISTK - An Overview of the System and its Components 10 August, 1992

Communications Track 2

A screen dump of the interfaces controlled by the Glish script of (). Accelerator regions are
chosen by the graphical selector (center top) and displayed graphically (bottom left) and tex-
tually (right). Selection of a magnetic devicee from these latter two displays feeds an SQL
query to the main database. The results of this query, giving more detail on the device, are
shown at top left. Each display is from a seperate program. They are controlled by Glish
events.

Internal communication also exists within each display. In the display at right, for instance, the
lattice structure 299 (at the top of display) is connected to the appropriate element type 96 (just
below) by Communistks. These internal connections may also be sent out of each program via
Glish.

ISTK - An Overview of the System and its Components 11 August, 1992

Communications Track 2

Tuning an Accelerator Beam

The example of tuning a particle accelerator beam demonstrates how the
ISTK sequencing components, (Glish and Communistks) allow human in-
tervention in the computer sequences that run the machine without
interfering with the overall sequence. The example below shows how pro-
cesses can be internally "re-wired" using Communistks and externally
"re-wired" between each other using Glish commands.

The Tune
Setting the "tune" of a particle accelerator is crucial to its performance.
When a beam of particles spins around in an circular accelerator, magnetic
fields try to focus it into the middle, forcing that beam to oscillate. This beam
of particles oscillates at a particular frequency (number of times around the
ring), based upon the strength of the focussing magnetic field.

The exact number of oscillations the beam performs per cycle is vital, as
various things can conspire to make the oscillations bigger and bigger,
eventually destroying the beam. An accelerator is never, for instance, set to
an integer tune. A beam set to an integer tune will oscillate exactly that
integer number of times and cycle back in exactly the same place in exactly
the same direction. If there are any imperfections in the magnetic field (a
situation impossible to avoid), the beam set to an integer tune will be kicked
slightly sideways by these imperfections every time it cycles the accelerator,
and very soon the beam will be kicked completely out of place. (Imagine the
actions of a child on a swing pushed by somebody else. If the pusher push-
es at the same place in every oscillation, even if the pushes don’t have much
force, the oscillations will get bigger and bigger and bigger, until the child
falls off. If, however, the child sitting on the swing is hit randomly, she and
the swing will stay at the bottom of the curve, oscillating only slightly.) It is
therefore vital to set the beam to a non-integer tune so that the first time the
beam cycles the ring it will return to the center of the ring, the second time
around it will have gone many oscillations plus a little bit, etc. This argument
is true for oscillations that repeat after 2, 3, 4, ... times and can get quite
complex in interactions with other forces. The principle is the same in all
cases. The tune must therefore be able to be measured and adjusted slight-
ly as the accelerator runs.

ISTK - An Overview of the System and its Components 12 August, 1992

Measuring the Tune
A beam pick-up is located at one point in the accelerator ring and measures
the beam position on successive turns. (In this example, the important part
of the measurement is the post-decimal number. The integer part of the
number of oscillations is not important for this example.) From these mea-
surements a graph is obtained. The graph will show a wave pattern that
may damp down as the oscillations get smaller and smaller or it may in-
crease in magnitude, indicating unstable operation.

A Fourier transform is performed (usually using a mathematical technique
called a Fast Fourier transform or FFt) to translate the wave form into a
graph of a musical tone, showing pitch, movement and timbre. If a beam
movement is analogous to the guitar string motion when the guitar string is
plucked, the FFt transform (no information is added or deleted) is the math-
ematical representation of what the human ear apprehends from the guitar
string motion; not the change in position of the string, but a perception of the
range of speeds of movement.

The beam should not measure as a pure tone, as a too-exact tone is at risk
for becoming unstable. The standard beam will plot with some noise at low
frequencies, a big peak (not a delta function, but a band of peaks), and
more noise at the high test frequencies.

Doing a peak search to obtain the top number of the peak (fitting a curve to
the highest points), the number of the tune is finally obtained. After the tune
number is obtained, changes can be made to it, the power supplies can be
altered accordingly, and the tune remeasured.

Correcting the Tune
As the particles are accelerated toward top energy (the sped at which the
experiments will work), the magnetic bending and focussing must change in
concert to control the progressively "stiffening" beam. The tune of the ac-
celerator may change as the beam is ramped up from low injection speed
to high field where the experiments can take place. As the beam acceler-
ates, the tune is measured every sixty milliseconds and these measure-
ments are plotted time against tune. The graph of the tune should show
smooth, well-understood and expected movements. At times, small glitch-
es around the curves occur and this is one place where the power supplies
often need to alter the tune to flatten the glitches. Once the particle beam
has been accelerated up to speed, other small adjustments may need to
occur as well.

ISTK - An Overview of the System and its Components 13 August, 1992

Because these tune measurements need to be taken so often to get an ac-
curate picture of the beam, is appropriate that computer programs (rather
than people) be designed and implemented to do these measurements au-
tomatically with human intervention only when necessary. Adjustments to
the beam also occur at rapid speeds and it is appropriate that computer
programs perform these other functions as well.

ISTK - An Overview of the System and its Components 14 August, 1992

LOCK

UNLOCK DONE?

EXIT

MEASURE

TRANSFORM

AND
PEAK SEARCH

YES

NO

MODEL
TO MAGNETS

SET MAGNETS

This is a highly simplified block dia-
gram illustrating tune measurement
and feedback. One problem: as the
machine is locked while an exten-
sive group of measurements is
done, operators may be unable to
work for a considerable time...

LOCK

UNLOCK

DONE?

MEASURE

TRANSFORM

AND
PEAK SEARCH

EXIT

YES

NO

MODEL
TO MAGNETS

SET MAGNETS

... a change at the Glish script level
will allow other users to touch the
machine between measurements...

TRANSFORM

AND
PEAK SEARCH

TRANSFORM

PEAK SEARCH

DISPLAY

...to break control within a program (here to inspect data halfway through analy-
sis), one must inform internal communication links to reattach to outside
processes. This is also possible dynamically and without recompilation.

Tevetron beam oscillating back to central position after a sideways kick...

...a Fourier transform shows a strong peak at a fractional tune of 4/13.

Tuning the Accelerator Beam

...the graphical browser "kasper" has been asked to plot only every thirteenth point.
The plot demonstrates that the beam is on a thirteenth order resonance...

transform of data before kick Þ

transform of data after kick Þ

ISTK - An Overview of the System and its Components 15 August, 1992

Altering Sequences
Both ISTK sequencing components, Glish and Communistks, have the
flexibility of allowing sequences to begin operation with a small number of
rule-based functions and having other control flow statements injected later.
 They also allow the functions to be disassociated from each other so that if
one part of the sequence goes wrong, the entire sequence will not crash.
They allow human intervention in the computer sequences that run the ma-
chine without interfering with the overall sequence.

Using Communistks to Alter the Beam Tune
In the instance of the particle accelerator’s tune, a program can be written
to take beam measurements and transform them into a graph. Sometimes
though, for instance, the original beam measurement is inaccurate and the
tune/time analysis will show a wayward analysis. In this case, the FFt might
show "fuzz" and this noise will lead to a false peak during the peak search-
ing analysis. If this occurs, the accelerator operators need access to the
program during the time between the FFt and the peak search, a time where
there is a single control flow. Communistks enable a person to plug in a
viewer and control panel at this point. Only when the operator approves of
the FFt will the peak search continue.

Using Glish to Alter the Beam Tuning Sequence
It is necessary to prevent other input during the period of time between
measurement of the beam tune and alteration of the power supplies that
control the beam tune. For this reason, the machine must be locked during
these procedures. The long length of time taken by locking the machine
(thus monopolizing it), performing the measurements, altering the power
supply, remeasuring, re-altering the power supply, and completely correct-
ing the beam before unlocking the machine can become a problem when
other people and functions need access to the machine. Glish enables the
"wiring" to be changed with a statement of rule change, moving the
lock/unlock functions into the loop cycle so that there is time between each
alteration cycle for others to "play through".

ISTK - An Overview of the System and its Components 16 August, 1992

Communications Track 2
Communistk Elements: The Focus and The Constrainer

The Focus
The Focus of a Communistk is essentially a "Thing of Interest" to a pro-
gram object; in computer terms, a memory location into which a value is
written. The Communistk is responsible for policing what happens to that
Focus and for routing advice of any changes to the Focus’ value to data
objects which have expressed an interest in the Focus. The Constrainer
class holds constraint information about the value of the focus.

When there has been a change to the Focus, the Communistk informs data
objects which have an interest in the Focus about the changes. These
data objects don’t know or care which or how many data objects may
change the Focus. They are only interested in knowing if it has been
changed. The data object which changes the value of the Focus does not
notify any other data objects of its action; it is the data objects who wish
notification which ask the Communistk to inform them of any changes to
the Focus.

Communistk Elements
The Present Datum device is thus notified by the Communistk of a change
in the value of the Focus. It does not change the data, it only presents the
data.

When the change datum device, the "catcher", is given a change request
from a person, it requests information from a separate data source that
holds information about the name and type of the focus.

The change request is then filtered through the Communistk and the
Constrainer. Between the Communistk and the Constrainer is a forced
internal link.

Communistk Constraints
Any changes to the focus are filtered through the Constrainer which holds
pre-established allowable values; minimums, maximums, etc. The infor-
mation about these constraints is held in a separate data source. Respon-
sibility for changes to the focus lies with the Constrainer, the low-level
wrapper. The change-datum devices do not need to take on that
responsibility.

ISTK - An Overview of the System and its Components 17 August, 1992

The Communistk creator, when creating space for the Communistk’s Fo-
cus or when attaching to the Focus, can assure that attempts to write in a
value of an incorrect value type will be blocked. Additional constraints on
that value (hard minimum and maximum values, warning and alarm val-
ues, restrictions on single-hit changes, etc.), may be placed using the
Communistk Constrainer class. These constraints are associated with the
Focus itself, not with the data object that is inputting the value change. Any
attempt to change the value of the Focus are properly checked and illegal
actions will be thrown out by the Communistk. Such actions may be mon-
itored without intervention of the object which tried the modification.

Change of Focus
In addition to the change in a Focus’ value, the Focus itself may move from
one data object to another. An analogy for this might be the "daily spe-
cials" list at the local restaurant:

Joanne’s Restaurant has a list of dishes served only on Mondays (roast
beef with potatoes, vegetarian casserole, shrimp salad), a list of dishes
served only on Tuesdays (Chef’s Salad, Sloppy Joe with boiled carrots,
calves liver saute), etc. These lists remain the same; every Monday the
specials are the same as every other Monday. Joanne is lazy, she doesn’t
like to rewrite the Specials Board every day, so she has seven boards in
the closet, each one listing the specials for one day of the week.

Joanne’s Special’s Boards are analogous to the Foci. Foci value (like the
daily lists) remain the same, but a move in the Focus resets which value is
being looked at (Monday’s, Tuesday’s or Wednesday’s Board). There are
a number of methods which do no changing of Focus value but simply
declare to all interested parties that the data Focus has shifted.

ISTK - An Overview of the System and its Components 18 August, 1992

SDS Track 1
The Self-describing Data Standard
SDS, the Self-describing Data Standard, is the ISTK component that facilitates data flow: the
movement of data between computers and between applications.

In fundamental terms, SDS is a description of the structure of a selected quantity of data.
SDS binds a descriptive information header to this data; this layer of information helps facil-
itate data manipulation and data transfer between processors of diverse architecture and
between various applications within a computer.

By using the SDS description, every application in the system, whatever its "world view", has
the ability to utilize the same data. (SDS does not control or determine data formats; the
person generating the data determines the appropriate format.) For applications designed to
analyze general forms of data in general ways (displays, Fourier transforms, etc.), SDS aids
by providing a full description of the data to be analyzed, and for applications designed to
analyze specific types of data in specific ways, SDS aids by filtering out inappropriate data.

SDS’ strength (like that of all the ISTK components) is in its ability to fill the gaps between
other available software. SDS has been created to provide a common link between data
management techniques in an experimental situation where it is effectively impossible to
replace the myriad of processors and languages with a single system.

Transferring data between applications and between processors can present problems, es-
pecially for people in the experimental world who need a great deal of flexibility. Many of
these problems are based on differences in data structuring and memory allocation in dif-
ferent systems.

SDS facilitates the data transfer between processors of different architecture. Perhaps a
good way to think of SDS is as "glue", a substance that binds these components (systems,
languages, applications) together at the level of bits and bytes, the level of memory allocation
and data structuring.

SDS operates on a higher level of data description. One of the important SDS data descrip-
tion features is the SDSListk, a type of persistent list that requires no duplication of data items
and no manual memory allocation.

SDS also aids data transfer between programs within a computer, using names and inter-
nalized pointers to sort many of the data coherency problems of shared memory that exist in
compiled languages.

There are tools to aid in constructing an SDS description. Once the SDS exists, data can be
examined, converted as binary data between various processor architectures, or moved to
various places where it can live on file, in shared memory, or in network messages. Pro-
grams currently exist to convert the data to another format, edit the data, copy the data,
delete the data, find out what architecture it was originally formatted for, etc.

ISTK - An Overview of the System and its Components 19 August, 1992

Using SDS to describe data also allows for potential upgrade. Should a system become avail-
able that is more appropriate than SDS, SDS will allow for transition to that system. Without the
use of SDS (or another data-standard), the transfer of information into a new environment will be
difficult.

ISTK - An Overview of the System and its Components 20 August, 1992

SDS Track 2
SDS - Data Transfer and Memory Allocation
SDS assumes that, optimally, an entire operation will be automatically run by computers
and, in designing SDS, a decision was made to build a structure optimized for the sys-
tems with the highest rates of performance rather than building a system optimized for the
slowest systems (people). In SDS, data remains in two parts: the basic data objects, and

Here, the sid editor is attached to a large (> 80 Megabyte) experimental data file. The
header contains all type and size information, including the three lower objects SD-
CEventAddress, SDCEventCounts, and SDSEventDesc. These objects contain file
information, event pointers, and sizes extracted from the body of the data by a previous
scan.
The data itself is mapped from disks. Random access to each event is efficient. Editor
customizing is done with a resource file. In this example, the three top objects are
ganged together so that accessing SDCEvent [203] will automatically access the lower
objects (also [203]). The number of records within each event has been read from the
datafile and written explicitly in the SDCEventCounts object. In general, each event is
of a different length.

ISTK - An Overview of the System and its Components 21 August, 1992

the data structure description. This two part division assures that if data search-
ing is needed it can be done as efficiently as by any interpreted language, and
at times if and when data searching is not needed, data access is optimized for
use by compiled languages. Because SDS stores data in a format appropriate
for high-speed manipulation, the system would be useless without interface
tools for the interaction between people and data. To this end, editors and
viewers have been developed and are provided with the SDS package.

Sharing information between processors and between computer languages is
a general problem in the computer world. Different computer systems inter-
preted languages embed data structuring information in their data, information
that cannot easily be read by compiled languages. Some data structures are
more sophisticated and complex than others. One of the major problems is that
every computer stores its data structures differently.

In SDS, the meta-data that exists in a compiled language only during the com-
pilation period remains as information directly associated with the data. Unlike
in an interpreted language, however, no descriptive information is embedded in
the actual data. And unlike in a database management system (which must
also contain this meta-data), the full description may be moved with small data
sets.

SDS formalizes memory allocation so that the programmer doesn’t have to re-
member how much memory has been allocated. In order to keep track of
memory allocated, part of the structure of the SDS header describes the size
information of all of its data objects. The SDS description also contains the
original memory allocation requests; it enables the programmer to wait until
run-time to allocate memory, and the SDS description can be written either at
compile time or at run-time.

SDS attempts to use the best facets of the memory allocation techniques of
interpreted and compiled languages in the right order (keeping the speed of C
and the informative power of the interpreted language, but not in a way that
slows down C) and then attempts to make it possible to move these pieces of
allocated memory from process to process and across networks.

SDS puts data onto the network in the format it has been programmed in and
provides enough information about the structures, sizing, memory allocation,
etc. so that any computer can translate the data into a readable format. By
presenting the data in its own format, SDS avoids the problem of unnecessary
translation.

ISTK - An Overview of the System and its Components 22 August, 1992

ISTK - An Overview of the System and its Components 23 August, 1992

Interpreted
 Basic

FORTRAN C C++

SDS enables
movement

SDS enables
movement

SDS enables
movement

SDS places a layer on top of the data that defines the structure for use by all systems
and languages. It allows data from more sophisticated structures to move into less
sophisticated structures by providing a bridge over which the structure can travel. SDS
enables data transfer in any direction but cannot alter the conceptual structure of a
language.

Two "Navagation" Aids
The illustration on the left shows a graphical/textual selector for SSC
accelerators. The illustration above is a dataset selector which displays
file directories and SDS datasets.

GLISTK Track 1
The Graphic Library for the Integrated Scientific Tool Kit
GLISTK is a C++ library of graphic tools developed to enable rapid creation of scientific com-
puter interfaces for unobtrusive data-viewing and data-manipulation. Because GLISTK is
designed specifically for experimentalists, it shrinks the time between the conception and exe-
cution of working, connected scientific interfaces.

A good interface is a communication feedback loop between a person instructing the computer
what to do and the computer telling the person what it has done. GLISTK provides subtle but
important features to strengthen and clarify the feedback connections between the person and
the computer through its "no-frills" aesthetic display, through highlighting, through mouse button
simplification, and through the lack of icons labeling GLISTK objects.

A primary difference between GLISTK and other interface-building tool kits lies in GLISTK’s
ability to communicate between graphic objects and its ability to extend that communication into
the outside world. By having a non-graphic object as its base, a GLISTK interface can be
operated by other processes as well as by people. Communication is facilitated by the ISTK
communication class, the Communistk. Communistks make the interior connections between
GLISTK objects as well as provide linkage to the outside world via the Glish executive.

InterViews Interactor Scene World

IstkObject

Communistk

Constrainer

ButtonGlistk

ToggleGlistk

Globject

Glistk

LabelGlistk

OutGlistk

InOutGlistk

Gorgan

MenuGlistk

GorganMaster

The Glistk Family Tree

ISTK - An Overview of the System and its Components 24 August, 1992

All of GLISTK’s features have been designed with "data purity" in mind. GLISTK objects provide
a view of a Communistk’s data focus and provide the means for altering data, but they do not
affect the data by its display.

GLISTK objects are basic building blocks from which other, more intricate and specific interface
tools can be easily derived. While decisions have been made about the look and function of
every object in the tool kit, almost every object method is "virtual" so that those functions and
appearances can be changed.

The Gloss library is an extension of GLISTK. Gloss objects are derived from GLISTK general
objects to form more complex objects such as: Plistk, a graphic plotter; DisLis, which displays
the ISTK list class; and Glider, which combines decrement and increment ButtonGlistks with an
InOutGlistk. Gloss is a collaborative project and people are encouraged to add their own derived
objects to the library.

ISTK - An Overview of the System and its Components 25 August, 1992

Credits and References
The Integrated Scientific Tool Kit (ISTK) was developed directly out of the problems associated
with running particle accelerators. Development began in the early 1980’s by Christopher Salt-
marsh at the CERN Super Proton Synchotron in Geneva. SDS, developed by Saltmarsh, was
used at the E778 FermiLab in which non-linearities were added to the Tevetron magnetic field to
simulate potential S.S.C. control problems. Other ISTK components used at this experiment
were Glish written by Vern Paxson at the Superconducting Super Collider Central Design Group,
and extended to its present version at LBL, and GLISTK, the ISTK graphic library, developed
primarily by Matthew Kane. SDS (and the other ISTK components) are under continuing de-
velopment and are currently being used at various sites internationally. Continuing ISTK
development includes work by Matthew Fryer, Andrea Young, documentation by Ericka Lutz,
and contract work from Soam Acharya of Cornell University and Sriram Chittathoor of the Uni-
versity of Connecticut. There have been considerable contributions from user groups such as
the S.S.C. Magnet Test Division. The current list of ISTK collaborators (see the mail exploder on
largo.lbl.gov) includes people from: the Superconducting Super Collider Accelerator System and
Magnet Divisions; Lawrence Berkeley Laboratory; FermiLab; Cornell University; Lawrence Liv-
ermore Laboratory; Texas University; and the Texas Accelerator Center.

ISTK Implementation
-The base computational environment for ISTK is Unix.(*), although the SDS
 component is ported to VMS and PC systems.
-The current SDS implementation is in C with a C++ wrapper and a Fortran binding.
- Glish functions are available from C++ and C.
- GLISTK is presently based on the InterViews graphics package.

ISTK Information and Documentation
All code and documentation is available via anonymous ftp from largo.lbl.gov. The main
postscript manuals are:

Lutz, Ericka, and Matthew Kane. The GLISTK Manual . March, 1991
Lutz, Ericka.The Integrated Scientific Tool Kit:, An Overview of the ISTK System and its Components.

Superconducting Super Collider publication S.S.C./man 012. July, 1991
Lutz, Ericka. The SDS Document, A Conceptual Basis Towards Understanding the Self-describing Data

Standard. December, 1991
Paxson, Vern. The Reference Manual for the Glish Sequencing Language. (vern@ee.lbl.gov)
Paxson, Vern and Chris Saltmarsh. Glish: A User-Level Software Bus for Loosley-Coupled Distributed Systems.

Extended Abstract July 21, 1992. Submitted to the Winter 1992 USENIX Conference.

Man pages,notes and technical documents are also there. Enquiries may be addressed to
salty@largo.lbl.gov
matt@largo.lbl.gov

* UNIX is a registered trademark of UNIX System Laboratories, Inc.

ISTK - An Overview of the System and its Components 26 August, 1992

